D-atom products in predissociation of CD2CD2OH from the 202-215 nm photodissociation of 2-bromoethanol.
نویسندگان
چکیده
Experimental observations of D fragments from the predissociation of rovibrationally excited partially deuterated 2-hydroxyethyl radicals, CD(2)CD(2)OH, are reported, and possible dissociation channels are analyzed by theory. The radicals are produced by photolysis of 2-bromoethanol at 202-215 nm, and some of them have sufficient internal energy to predissociate. D fragments are detected by 1 + 1' REMPI and their TOF distributions are determined. They can be associated with vinyl alcohol and/or acetaldehyde cofragments. From analysis of the maximum velocities and kinetic energies of the observed D fragments it is concluded that they originate from the decomposition of CD(2)CD(2)OH, but the experimental resolution is insufficient to distinguish between the two possible channels leading to D products. Theoretical analysis and RRKM calculations of microcanonical dissociation rates and branching ratios for the range of available excess energies (up to 5000-8000 cm(-1) above the OH + C(2)D(4) threshold) indicate that the D-producing channels are minor (about 1%) compared to the predominant OH + C(2)D(4) channel, and the branching ratio for D production is more favorable when the reactant radicals have low rotational energy. The vinyl alcohol channel is strongly favored over the acetaldehyde channel at all excess energies, except near the threshold of these channels.
منابع مشابه
Effects of high angular momentum on the unimolecular dissociation of CD2CD2OH: theory and comparisons with experiment.
This paper explores the dynamics of a highly rotationally and vibrationally excited radical, CD2CD2OH. The radical is produced from the 193 nm photodissociation of 2-bromoethanol-d4, so it is imparted with high angular momentum and high vibrational energy and subsequently dissociates to several product channels. This paper focuses on characterizing its angular momentum and modeling its effect o...
متن کاملVacuum ultraviolet photodissociation of hydrogen bromide.
Photodissociation dynamics of HBr at a series of photolysis wavelengths in the range of 123.90-125.90 nm and at around 137.0 nm have been studied using the H atom Rydberg "tagging" time-of-flight technique. The branching fractions between the channels forming ground Br((2)P3/2) and spin-orbit excited Br((2)P1/2) atoms together with the angular distributions of the products corresponding to thes...
متن کاملC-Cl bond fission dynamics and angular momentum recoupling in the 235 nm photodissociation of allyl chloride.
The photodissociation dynamics of allyl chloride at 235 nm producing atomic Cl((2)P(J);J=1/2,3/2) fragments is investigated using a two-dimensional photofragment velocity ion imaging technique. Detection of the Cl((2)P(1/2)) and Cl((2)P(3/2)) products by [2+1] resonance enhanced multiphoton ionization shows that primary C-Cl bond fission of allyl chloride generates 66.8% Cl((2)P(3/2)) and 33.2%...
متن کاملPhotodissociation dynamics of the A 2 + state of SH and SD radicals
Atomic sulfur products from predissociation of the lowest rotational states of SH/SD A 2 + v =0,1 ,2 are studied using velocity map imaging. The dissociation process, which is slow compared to rotation, is dominated by interference effects due to predissociation of states with low rotation quantum numbers prepared by photoexcitation using overlapping transitions of different parities. The measu...
متن کاملA velocity map imaging study
A study of the photodissociation dynamics of NO2 in the 200–205 nm region using resonance enhanced multiphoton ionization (REMPI) in conjunction with the velocity map imaging technique is presented. We chose this region because it allowed the use of a single laser to photodissociate the NO2 molecule and probe both the O(D2) fragment using (2+1) REMPI via the 3p ′1P1 state at 2× 205.47 nm and th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The journal of physical chemistry. A
دوره 114 17 شماره
صفحات -
تاریخ انتشار 2010